采访 Footprint Analytics CEO Navy: AI 与 Web3 的融合之道

OKX欧易
全球最大交易所之一,注册领50 USDT数币盲盒,币圈必备交易平台。

web3 正在引领互联网的下一个时代。然而,链上数据碎片化、不标准化的问题依然存在。footprint Analytics 推出一站式数据解决方案,通过 ai 技术实现区块链数据的自动收集、清洗、关联,构建跨链数据标准,让开发者更便捷地访问和分析数据。

“我们希望成为 Web3 版的‘Google Analytics’,通过 20 公链以及结构化的数据覆盖,提供行业领先的增长分析和运营分析工具,帮助 Web3 项目实现精准营销。”Footprint 创始人兼 CEO Navy 表示,“与此同时,我们也在探索 AI 在其他方面的应用,比如自通过 AI 获取数据分析面板等,以进一步提升区块链产业的生产效率。”

Navy 认为,AI 和区块链技术的结合必将成为 Web3 实现大规模应用的催化剂。一方面,高质量数据是培训 AI 模型的基础;另一方面,AI 也可以反过来帮助产出高价值数据。“数据是这个行业的命脉。我们正在尝试建立一个正向循环的生态系统,让 AI 和区块链技术相得益彰,从而推动整个 Web3 行业的发展。”

Q1:请 Navy 帮忙介绍一下 Footprint Analytics 目前在做的事情是什么?

Footprint Analytics 致力于构建一个连接 Web2 和 Web3 数据的结构化数据平台。

我们的核心价值在于数据的结构化。尽管 Web3 相对于 Web2 在链上数据公开透明方面具备优势,但也存在一些挑战,比如行业的发展尚处于早期阶段,数据缺乏标准,缺乏完善的结构,因此数据的应用变得困难。

以一个例子来说明,如果您想获取 Opensea 在以太坊、Solana 和 Polygon 等多条链上的交易数据,您需要理解 Opensea 的业务模型、阅读智能合约代码、逐个链(如以太坊、Solana、Polygon等)提取交易数据。

然而,这个过程存在一些问题。首先,过程复杂,获取数据的整个过程复杂且容易出错。其次,技术难度较大,不同链的账本设计和数据结构各不相同。最后,浪费资源,如果有 1000 人需要获取这些数据,就要执行 1000 次类似的繁琐流程,将会极大地降低数据获取效率,浪费计算资源。

因此,Footprint Analytics 的使命就是抽象各个领域的数据,包括 GameFi、NFT 和 DeFi 等,以建立 Web3 行业的数据标准,,为开发者和行业参与者提供高效、准确的数据。

截止目前,我们累计上线了 20 条公链,产品主要包含 3 大板块:

  • 行业解决方案 Footprint Growth Analytics:为 Web3 项目在营销增长和运营分析领域提供定制化解决方案,可以类比为 Web3 版本的 Google Analytics,助力项目实现数据驱动增长。

  • 0 代码数据分析工具:使用体验类似于 ChatGPT,通过简单的问题与回答即可获取数据分析报告。我预见未来使用链上数据将变得极其简便,无需深入了解 Web3 的业务逻辑,也无需高超的编程技能,从而使得从 Web2 用户向 Web3 的迁移变得更加容易实现。

  • 免费的多链跨链 API:通过一个统一的API,实现对多条链的跨链数据访问,免费为用户提供无缝的多链数据检索体验。

Q2:目前的 Web3 项目中,与 AI 结合成为了一项引人注目的趋势。这其中,不论是 GPT 还是 AIGC,每个项目都根据自身情况在与 AI 结合方面展现出了不同的创意。接下来,请 Navy 从数据领域的视角来探讨,如何将 AI 与 Web3 相融合,这部分可以从技术和应用场景两个角度进行分析,以便更清晰地展现这一融合的方式和可能性。

作为一家数据平台,Footprint 与 AI 具有天然的结合能力。AI 的基础设施主要涵盖算力、数据和算法三个关键方面。其中,算力是支撑 AI 模型训练和执行的基石,数据是 AI 的灵魂,而算法决定着 AI 的表现,包括模型的准确性和应用效果。

在这些要素中,数据无疑是最为核心、最为重要的。数据是行业和企业的命脉,更涉及到隐私和合规等关键领域,价值不可估量。钱甚至也不一定能买到数据,因为涉及隐私、涉及合规等等方面。而在这其中,AI 是数据的消费者,同时也是数据的生产者。

目前,Footprint 在数据与 AI 结合应用方面有以下几个主要方面:

在数据内容生成阶段,AI 的应用在我们平台中发挥着重要作用。首先,我们通过 AI 生成处理数据的代码,从而为用户提供更高效的数据分析体验。

具体来说,我们关注了两个方面的创新。

一方面是“Reference data”的整理与分类。以区块链上新部署的合约为例,我们的AI可以自动判断合约归属于哪个 protocol,合约的类型,甚至是合约是否属于 Dex 平台中的 LP 或 swap 等类型。这种智能整理和归类,大幅提升了数据的可用性。

另一方面,基于这些“Reference data”,我们还可以进行上层领域数据的生成。举例来说,我们能够利用 AI 生成 GameFi、NFT 等领域的数据,为用户提供更丰富的数据资源。这种方式不仅提高了数据内容的质量,也让用户能够更深入地了解各个领域的数据动态。

在前端用户体验上,我们做了一个 AI 智能分析的功能。前面提到,用户在使用 Footprint 进行数据分析时,可以拥有类似于与 ChatGPT 聊天的体验。用户可以通过提问,自动获得相应的分析报告。背后的逻辑是将文本转化为 SQL 语句,从而大幅降低了用户进行数据分析的门槛。

最后,在产品用户支持上,我们研发了 AI 客服机器人。 我们将区块链领域的数据,包括 GameFi、NFT、DeFi 等各个领域的结构化数据提供给 AI,构建出 Footprint 专属的 AI 客服机器人。这个 AI 客服机器人能够为用户提供即时的支持,回答与 Footprint 使用相关的问题,比如数据种类、数据定义、API 使用等,极大地提高了客户支持的效率,同时也减少了人工投入。

采访 footprint Analytics CEO Navy: ai 与 web3 的融合之道

当然,AI 的应用虽然能够提升生产力,帮助我们解决大部分问题,但并非能够解决所有问题。基于我们在数据处理方面的经验,AI 能够协助解决大约 70% 至 80% 的问题。

Q3:在将 AI 与 Web3 相结合的过程中,会出现哪些问题?是否有一些技术难点、用户体验、产权合规以及道德伦理等等相关问题

宏观上来讲,不管AI应用在哪些领域,一个重要的考虑因素是对于AI容错率的接受程度。在不同的应用场景下,对容错率的要求各有不同。在此过程中,需要权衡AI的准确性和可靠性,以及人们对于错误的容忍度。

在医疗领域,选择相信 AI 还是医生的决策可能涉及信任的挑战。在投资领域,AI 可以提供影响 BTC 价格走向的因素,但在实际买入或卖出的决策方面,人们可能仍持有疑虑。

然而,在营销和运营分析领域,例如对于用户画像和分层,精确度要求可能不高,因为轻微的错误不会产生重大影响。因此,容错率在这些场景中接受度较高。

当前,Footprint 在将 AI 与 Web3 相结合这一赛道上依然主要专注于数据,过程中也遇到了一些挑战:

第一个是在数据生产方面的问题,如何为AI提供高质量数据,以实现更高效、更精准的数据生产能力。我们可以把 AI 和数据的关系类比汽车的发动机和汽油,AI 是引擎,数据则是其所需的燃料。发动机再好,若缺乏高质量的燃料,性能将无法最大化。

这里就涉及到怎么生产高质量的数据问题,比如快速自动化地生产 GameFi、NFT、DeFi 等领域的数据。这涵盖了如何自动整理数据的关联关系,即数据的图谱。具体而言,我们需要明确合约的所属协议、合约类型、部署者等多个信息。这一过程的核心目标在于持续地为 AI 提供高质量数据,以实现其更高效、更精准的数据生产能力,从而形成良性循环。

其次是数据隐私问题。尽管 Web3 的本质在于去中心化与透明,随着行业的发展,我们也会看到类似 Web2 的情景,数据隐私需求逐渐凸显。例如,用户的身份、资产和交易信息的隐私保护。这产生了一个难题:链上数据的公开性逐渐减弱,可供给 AI 的数据也逐渐减少。然而,随着行业的进展,这个问题也会得到解决,同态加密技术就是其中一个解决方向。

总之,将 AI 与 Web3 相结合必然面临一个核心问题:数据获取,即如何获取高质量数据并将其传递给 AI。AI 的最终挑战将在于数据的可获得性。

Q4:虽然 AI 并非新名词,但 AI 与 Web3 的结合仍处于初级阶段。请问 Navy 认为未来 AI 在 Web3 中可能出现哪些领域或结合方式,有望成为爆发点,吸引大量用户进入 Web3 并实现大规模采用?

我认为要实现 Web3 与 AI 的大规模结合和采用,需要解决两个核心问题。首先,我们需要更好地为 Web3 的构建者和开发者提供服务,尤其是在 GameFi、NFT、社交等领域的开发者。其次,我们需要降低应用端的门槛,使用户更轻松地进入这个领域。

首先是服务于开发者这一议题。在开发者这个领域,可以分为两类主要的应用。

一类是 AI 驱动的开发者平台。这一类平台利用AI技术,实现了代码模板的自动化生成。无论是开发 DEX 平台还是 NFT 市场,都可以根据开发者的具体需求智能生成代码模板,从而显著提高开发效率。在游戏领域,开发者也可以通过 AI 技术,游戏开发者可以更快地制作游戏模型,生成游戏图片等,从而加速游戏的开发和上线流程。这种平台能够为开发者提供更多可能性,让他们可以将更多精力投入到创意和创新上,而不必在重复的基础工作上花费过多时间。

另一类是AI 驱动的数据平台。这一类平台通过AI技术自动生产各个行业的领域数据,如 GameFi、NFT、SocialFi、DeFi 等。这些平台的目标是降低开发者使用数据的门槛,使数据分析和应用变得更加容易。通过 AI 技术,平台可以自动化地生成各种数据,为开发者提供丰富的数据资源,使其可以更好地了解市场趋势、用户行为等。这种数据平台为开发者提供了更多的数据支持,让开发者使用数据的门槛变得极低,推动了更多创新应用的诞生。

降低应用端门槛一直是 Web3 领域的关键问题。举例来说,市场上近期涌现出一些几乎零手续费的公链解决方案,旨在提高每秒交易数(TPS)。此外,像MPC钱包这样的解决方案也能有效地解决从Web2向Web3迁移的初级门槛,解决迁移过程中的困难。

这些问题的解决不仅仅依赖于 AI 技术,更关乎整个 Web3 生态的发展和完善。虽然 AI 在提升效率和降低门槛方面发挥重要作用,但在解决应用端门槛的永恒话题中,Web3 本身的基础建设和发展仍然是至关重要的因素。

Footprint Analytics 是一个链接 Web2 以及 Web3 的结构化数据平台 。借助尖端的人工智能技术,我们提供 Crypto 领域首家支持无代码数据分析平台以及统一的数据 API,让用户可以快速检索超过 26 条公链生态的 NFT,GameFi 以及 DeFi 数据。

Footprint Website:https://kubaobao.cn/wp-content/uploads/db/4435967427bf16a63850ee4c3a565c.jpg

Discord:

Twitter:

本站声明:网站内容来源于网络,如有侵权,请联系我们,我们将及时处理。

版权声明:
作者:币圈宝
链接:https://www.kubaobao.cn/198599.html
来源:币圈宝
文章版权归作者所有,未经允许请勿转载。

THE END
分享
二维码
< <上一篇
下一篇>>
酷宝宝